
deepnog
Release 1.1.0

Lukas Gosch, Roman Feldbauer

Aug 28, 2020

GETTING STARTED

1 Installation 3

2 Quick start example 5

3 User guide 7

4 API Documentation 9

5 Contributing 17

6 Changelog 21

7 Getting started 23

8 User Guide 25

9 API Documentation 27

10 Development 29

11 What’s new 31

12 Indices and tables 33

Python Module Index 35

Index 37

i

ii

deepnog, Release 1.1.0

deepnog is a Python package for predicting protein orthologous groups with deep networks.

GETTING STARTED 1

deepnog, Release 1.1.0

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

1.1 Installation from PyPI

The current release of deepnog can be installed from PyPI:

pip install deepnog

For typical use cases, and quick start, this is sufficient.

1.2 Dependencies and model files

All package dependencies of deepnog are automatically installed by pip. We also require model files (networks
parameters/weights), which are too large for GitHub/PyPI. These are hosted on separate servers, and downloaded
automatically by deepnog, when required. By default, models are cached in $HOME/deepnog_data/.

You can change this path by setting the DEEPNOG_DATA environment variable.

DEEPNOG_DATA="/custom/path/models" deepnog sequences.fa

1.3 Installation from source

You can always grab the latest version of deepnog directly from GitHub:

cd install_dir
git clone git@github.com:VarIr/deepnog.git
cd deepnog
pip install -e .

This is the recommended approach, if you want to contribute to the development of deepnog.

3

deepnog, Release 1.1.0

1.4 Supported platforms

deepnog currently supports all major operating systems:

• Linux

• MacOS X

• Windows

4 Chapter 1. Installation

CHAPTER

TWO

QUICK START EXAMPLE

Users of deepnog typically want to

1. . . .

2. . . .

3. . . .

The following example shows all these steps for an example dataset. Please make sure you have installed deepnog
(installation instructions).

First, we load the dataset and inspect its size.

from deepnog import predict
...

deepnog input.fa --out prediction.csv -db eggNOG5 --tax 2

5

installation.html

deepnog, Release 1.1.0

6 Chapter 2. Quick start example

CHAPTER

THREE

USER GUIDE

Welcome to deepnog! Here we describe the core functionality of the package (. . .), and provide several usage
examples.

3.1 Concepts

concepts

3.2 Examples

examples

7

deepnog, Release 1.1.0

8 Chapter 3. User guide

CHAPTER

FOUR

API DOCUMENTATION

This is the API documentation for deepnog.

4.1 DeepNOG

DeepNOG is a deep learning based command line tool which predicts the protein families of given protein sequences
based on pretrained neural networks.

The main module of this tool is defined in deepnog.py. For details about the usage of the tool, the reader is referred to
the documentation as well as deepnog.py.

4.2 deepnog.client

Author: Lukas Gosch

Date: 2019-10-18

Usage: python client.py –help

Description:

Provides the deepnog command line client and entry point for users.

DeepNOG predicts protein families/orthologous groups of given protein sequences with deep learning.

File formats supported: Preferred: FASTA DeepNOG supports protein sequences stored in all file formats
listed in https://biopython.org/wiki/SeqIO but is tested for the FASTA-file format only.

Architectures supported:

Databases supported:

• eggNOG 5.0, taxonomic level 1 (root)

• eggNOG 5.0, taxonomic level 2 (bacteria)

deepnog.client.get_parser()
Creates a new argument parser.

Returns parser – ArgumentParser object to parse program arguments.

Return type ArgumentParser

deepnog.client.main()
DeepNOG command line tool.

deepnog.client.start_prediction(args)

9

https://biopython.org/wiki/SeqIO

deepnog, Release 1.1.0

4.3 deepnog.dataset

Author: Lukas Gosch

Date: 2019-10-03

Description:

Dataset classes and helper functions for usage with deep network models written in PyTorch.

class deepnog.dataset.ProteinDataset(file, f_format='fasta')
Bases: torch.utils.data.dataset.IterableDataset

Protein dataset holding the proteins to classify.

Does not load and store all proteins from a given sequence file but only holds an iterator to the next sequence to
load.

Thread safe class allowing for multi-worker loading of sequences from a given datafile.

Parameters

• file (str) – Path to file storing the protein sequences.

• f_format (str) – File format in which to expect the protein sequences. Must be sup-
ported by Biopython’s Bio.SeqIO class.

class deepnog.dataset.ProteinIterator(file_, aa_vocab, f_format, n_skipped: Union[int,
deepnog.sync.SynchronizedCounter] = 0,
num_workers=1, worker_id=0)

Bases: object

Iterator allowing for multiprocess data loading of a sequence file.

ProteinIterator is a wrapper for the iterator returned by Biopython’s Bio.SeqIO class when parsing a sequence
file. It specifies custom __next__() method to support single- and multi-process data loading.

In the single-process loading case, nothing special happens, the ProteinIterator sequentially iterates over the data
file. In the end, it informs the main module about the number of skipped sequences (due to empty ids) through
setting a global variable in the main module.

In the multi-process loading case, each ProteinIterator loads a sequence and then skips the next few sequences
dedicated to the other workers. This works by each worker skipping num_worker - 1 data samples for each call
to __next__(). Furthermore, each worker skips worker_id data samples in the initialization. At the end of the
workers lifetime, it sends the number of skipped sequences back to the main process through a pipe the main
process created.

The ProteinIterator class also makes sure that a unique ID is set for each SeqRecord obtained from the data-
iterator. This allows unambiguous handling of large protein datasets which may have duplicate IDs from merg-
ing multiple sources or may have no IDs at all. For easy and efficient sorting of batches of sequences as well as
for direct access to the original IDs, the index is stored separately.

Parameters

• file (str) – Path to sequence file, from which an iterator over the sequences will be
created with Biopython’s Bio.SeqIO.parse() function.

• aa_vocab (dict) – Amino-acid vocabulary mapping letters to integers

• f_format (str) – File format in which to expect the protein sequences. Must be sup-
ported by Biopython’s Bio.SeqIO class.

• num_workers (int) – Number of workers set in DataLoader or one if no workers set. If
bigger or equal to two, the multi-process loading case happens.

10 Chapter 4. API Documentation

deepnog, Release 1.1.0

• worker_id (int) – ID of worker this iterator belongs to

deepnog.dataset.collate_sequences(batch, zero_padding=True)
Collate and zero-pad encoded sequence.

Parameters

• batch (list[namedtuple] or namedtuple) – Batch of protein sequences to clas-
sify stored as a namedtuple-class sequence (see ProteinDataset).

• zero_padding (bool) – If True, zero-pads protein sequences through appending zeros
until every sequence is as long as the longest sequences in batch. If False raise NotImple-
mentedError.

Returns batch – Input batch zero-padded and stored in namedtuple-class collated_sequences.

Return type namedtuple

class deepnog.dataset.collated_sequences(indices, ids, sequences)
Bases: tuple

count(value, /)
Return number of occurrences of value.

property ids
Alias for field number 1

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property indices
Alias for field number 0

property sequences
Alias for field number 2

deepnog.dataset.consume(iterator, n=None)
Advance the iterator n-steps ahead. If n is None, consume entirely.

Function from Itertools Recipes in official Python 3.7.4. docs.

deepnog.dataset.gen_amino_acid_vocab(alphabet=None)
Create vocabulary for protein sequences.

A vocabulary is defined as a mapping from the amino-acid letters in the alphabet to numbers. As this mapping
is aware of zero-padding, it maps the first letter in the alphabet to 1 instead of 0.

Parameters alphabet (str) – Alphabet to use for vocabulary. If None, use ‘ACDEFGHIKLM-
NPQRSTVWYBXZJUO’ (equivalent to deprecated Biopython’s ExtendedIUPACProtein).

Returns vocab – Mapping of amino acid characters to numbers.

Return type dict

4.3. deepnog.dataset 11

deepnog, Release 1.1.0

4.4 deepnog.inference

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Predict orthologous groups of protein sequences.

deepnog.inference.load_nn(architecture, model_dict, device='cpu')
Import NN architecture and set loaded parameters.

Parameters

• architecture (str) – Name of neural network module and class to import.

• model_dict (dict) – Dictionary holding all parameters and hyper-parameters of the
model.

• device ([str, torch.device]) – Device to load the model into.

Returns model – Neural network object of type architecture with parameters loaded from
model_dict and moved to device.

Return type torch.nn.Module

deepnog.inference.predict(model, dataset, device='cpu', batch_size=16, num_workers=4, ver-
bose=3)

Use model to predict zero-indexed labels of dataset.

Also handles communication with ProteinIterators used to load data to log how many sequences have been
skipped due to having empty sequence ids.

Parameters

• model (nn.Module) – Trained neural network model.

• dataset (ProteinDataset) – Data to predict protein families for.

• device ([str, torch.device]) – Device of model.

• batch_size (int) – Forward batch_size proteins through neural network at once.

• num_workers (int) – Number of workers for data loading.

• verbose (int) – Define verbosity.

Returns

• preds (torch.Tensor, shape (n_samples,)) – Stores the index of the output-node with the
highest activation

• confs (torch.Tensor, shape (n_samples,)) – Stores the confidence in the prediction

• ids (list[str]) – Stores the (possible empty) protein labels extracted from data file.

• indices (list[int]) – Stores the unique indices of sequences mapping to their position in the
file

12 Chapter 4. API Documentation

deepnog, Release 1.1.0

4.5 deepnog.io

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Input/output helper functions

deepnog.io.create_df(class_labels, preds, confs, ids, indices, threshold=None, verbose=3)
Creates one dataframe storing all relevant prediction information.

The rows in the returned dataframe have the same order as the original sequences in the data file. First column
of the dataframe represents the position of the sequence in the datafile.

Parameters

• class_labels (list) – Store class name corresponding to an output node of the net-
work.

• preds (torch.Tensor, shape (n_samples,)) – Stores the index of the output-
node with the highest activation

• confs (torch.Tensor, shape (n_samples,)) – Stores the confidence in the
prediction

• ids (list[str]) – Stores the (possible empty) protein labels extracted from data file.

• indices (list[int]) – Stores the unique indices of sequences mapping to their posi-
tion in the file

• threshold (int) – If given, prediction labels and confidences are set to ‘’ if confidence
in prediction is not at least threshold.

• verbose (int) – If bigger 0, outputs warning if duplicates detected.

Returns df – Stores prediction information about the input protein sequences. Duplicates (defined
by their sequence_id) have been removed from df.

Return type pandas.DataFrame

deepnog.io.get_data_home(data_home: str = None)→ pathlib.Path
Return the path of the deepnog data dir.

This folder is used for large files that cannot go into the Python package on PyPI etc. For example, the net-
work parameters (weights) files may be larger than 100MiB. By default the data dir is set to a folder named
‘deepnog_data’ in the user home folder. Alternatively, it can be set by the ‘DEEPNOG_DATA’ environment
variable or programmatically by giving an explicit folder path. If the folder does not already exist, it is automat-
ically created.

Parameters data_home (str | None) – The path to deepnog data dir.

4.5. deepnog.io 13

deepnog, Release 1.1.0

Notes

Adapted from SKLEARN_DATAHOME.

deepnog.io.get_weights_path(database: str, level: str, architecture: str, data_home=None, down-
load_if_missing=True)→ pathlib.Path

Get path to neural network weights.

This is a path on local storage. If the corresponding files are not present, download from remote storage. The
default remote URL can be overridden by setting the environment variable DEEPNOG_REMOTE.

Parameters

• database (str) – The orthologous groups database. Example: eggNOG5

• level (str) – The taxonomic level within the database. Example: 2 (for bacteria)

• architecture (str) – Network architecture. Example: deepencoding

• data_home (string, optional) – Specify another download and cache folder for
the weights. By default all deepnog data is stored in ‘~/deepnog_data’ subfolders.

• download_if_missing (boolean, default=True) – If False, raise a IOError if
the data is not locally available instead of trying to download the data from the source site.

Returns weights_path – Path to file of network weights

Return type Path

4.6 deepnog.models

Description:

Network definitions (PyTorch modules)

4.7 deepnog.sync

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Parallel processing helpers

class deepnog.sync.SynchronizedCounter(init: int = 0)
Bases: object

A multiprocessing-safe counter.

Parameters init (int, optional) – Counter starts at init (default: 0)

increment(n=1)
Obtain a lock before incrementing, since += isn’t atomic.

Parameters n (int, optional) – Increment counter by n (default: 1)

increment_and_get_value(n=1)→ int
Obtain a lock before incrementing, since += isn’t atomic.

Parameters n (int, optional) – Increment counter by n (default: 1)

14 Chapter 4. API Documentation

https://github.com/scikit-learn/scikit-learn/blob/0.22.X/sklearn/datasets/_base.py

deepnog, Release 1.1.0

property value

4.8 deepnog.tests

Description:

deepnog unit tests

4.9 deepnog.utils

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Various utility functions

deepnog.utils.set_device(device)
Set device (CPU/GPU) depending on user choice and availability.

Parameters device (str) – Device set by user as an argument to DeepNOG call.

Returns device – Object containing the device type to be used for prediction calculations.

Return type torch.device

4.8. deepnog.tests 15

deepnog, Release 1.1.0

16 Chapter 4. API Documentation

CHAPTER

FIVE

CONTRIBUTING

deepnog is free open source software. Contributions from the community are highly appreciated. Even small contri-
butions improve the software’s quality.

Even if you are not familiar with programming languages and tools, you may contribute by filing bugs or any problems
as a GitHub issue.

5.1 Git and branching model

We use git for version control (CVS), as do most projects nowadays. If you are not familiar with git, there are lots of
tutorials on GitHub Guide. All the important basics are covered in the GitHub Git handbook.

Development of deepnog (mostly) follows this git branching model. We currently use one main branch: master. For
any changes, a new branch should be created. This includes new feature, noncritical or critical bug fixes, etc.

5.2 Workflow

In case of large changes to the software, please first get in contact with the authors for coordination, for example by
filing an issue. If you want to fix small issues (typos in the docs, obvious errors, etc.) you can - of course - directly
submit a pull request (PR).

1. Create a fork of deepnog in your GitHub account. Simply click “Fork” button on https://github.com/VarIr/
deepnog.

2. Clone your fork on your computer. $ git clone git@github.com:YOUR-ACCOUNT-GOES-HERE/
deepnog.git && cd deepnog

3. Add remote upstream. $ git remote add upstream git@github.com:VarIr/deepnog.git

4. Create feature/bugfix branch. $ git checkout -b bugfix123 master

5. Implement feature/fix bug/fix typo/. . . Happy coding!

6. Create a commit with meaningful message If you only modified existing files, simply $ git commit
-am "descriptive message what this commit does (in present tense)
here"

7. Push to GitHub e.g. $ git push origin featureXYZ

8. Create pull request (PR) Git will likely provide a link to directly create the PR. If not, click “New pull request”
on your fork on GitHub.

17

https://github.com/VarIr/deepnog/issues
https://guides.github.com/
https://guides.github.com/introduction/git-handbook/
https://nvie.com/posts/a-successful-git-branching-model/
https://github.com/VarIr/deepnog/issues
https://github.com/VarIr/deepnog
https://github.com/VarIr/deepnog

deepnog, Release 1.1.0

9. Wait. . . Several devops checks will be performed automatically (e.g. continuous integration (CI) with Travis,
AppVeyor).

The authors will get in contact with you, and may ask for changes.

10. Respond to code review. If there were issues with continuous integration, or the authors asked for changes,
please create a new commit locally, and simply push again to GitHub as you did before. The PR will be
updated automatically.

11. Maintainers merge PR, when all issues are resolved. Thanks a lot for your contribution!

5.3 Code style and further guidelines

• Please make sure all code complies with PEP 8

• All code should be documented sufficiently (functions, classes, etc. must have docstrings with general descrip-
tion, parameters, ideally return values, raised exceptions, notes, etc.)

• Documentation style is NumPy format.

• New code must be covered by unit tests using pytest.

• If you fix a bug, please provide regression tests (fail on old code, succeed on new code).

• It may be helpful to install deepnog in editable mode for development. When you have already cloned the
package, switch into the corresponding directory, and

pip install -e .

(don’t omit the trailing period). This way, any changes to the code are reflected immediately. That is, you don’t
need to install the package each and every time, when you make changes while developing code.

5.4 Testing

In deepnog, we aim for high code coverage. As of Feb 2020, more than 95% of all code lines are visited at least once
when running the complete test suite. This is primarily to ensure:

• correctness of the code (to some extent) and

• maintainability (new changes don’t break old code).

Creating a new PR, ideally all code would be covered by tests. Sometimes, this is not feasible or only with large effort.
Pull requests will likely be accepted, if the overall code coverage at least does not decrease.

Unit tests are automatically performed for each PR using CI tools online. This may take some time, however. To run
the tests locally, you need pytest installed. From the deepnog directory, call

pytest deepnog/

to run all the tests. You can also restrict the tests to the subpackage you are working on, down to single tests. For
example

pytest deepnog/tests/test_dataset.py --showlocals -v

only runs tests about datasets.

In order to check code coverage locally, you need the pytest-cov plugin.

18 Chapter 5. Contributing

https://www.python.org/dev/peps/pep-0008/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://docs.pytest.org/en/latest/
https://github.com/pytest-dev/pytest-cov

deepnog, Release 1.1.0

pytest deepnog --cov=deepnog

5.4. Testing 19

deepnog, Release 1.1.0

20 Chapter 5. Contributing

CHAPTER

SIX

CHANGELOG

6.1 Next release

. . .

6.2 1.1.0 - 2020-02-28

6.2.1 Added

• EggNOG5 root (tax 1) prediction

6.2.2 Changed

• Package structure changed for higher modularity. This will require changes in downstream usages.

• Remove network weights from the repository, because files are too large for github and/or PyPI. deepnog
automatically downloads these from CUBE servers, and caches them locally.

• More robust inter-process communication in data loading

6.2.3 Fixes

• Fix error on very short amino acid sequences

• Fix error on unrecognized symbols in sequences (stop codons etc.)

• Fix multiprocess data loading from gzipped files

• Fix type mismatch in deepencoding embedding layer (Windows only)

21

https://cube.univie.ac.at

deepnog, Release 1.1.0

6.2.4 Maintenance

• Continuous integration on

– Travis (Linux, MacOS)

– AppVeyor (Windows)

• Codecov coverage reports

• LGTM code quality/security reports

• Documentation on ReadTheDocs

• Upload to PyPI, thus enabling $ pip install deepnog.

6.3 1.0.0 - 2019-10-18

The first release of deepnog to appear in this changelog. It already contains the following features:

• EggNOG5 bacteria (tax 2) prediction

• DeepEncoding architecture

• CPU and GPU support

• Runs on all major platforms (Linux, MacOS, Windows)

22 Chapter 6. Changelog

https://travis-ci.com/VarIr/deepnog/
https://ci.appveyor.com/project/VarIr/deepnog
https://codecov.io/gh/VarIr/deepnog/
https://lgtm.com/projects/g/VarIr/deepnog
https://deepnog.readthedocs.io
https://pypi.org/project/deepnog/

CHAPTER

SEVEN

GETTING STARTED

Get started with deepnog in a breeze. Find how to install the package and see all core functionality applied in a
single quick start example.

23

getting_started/installation.html
getting_started/example.html

deepnog, Release 1.1.0

24 Chapter 7. Getting started

CHAPTER

EIGHT

USER GUIDE

The User Guide introduces the main concepts of deepnog.

25

documentation/user_guide.html

deepnog, Release 1.1.0

26 Chapter 8. User Guide

CHAPTER

NINE

API DOCUMENTATION

The API Documentation provides detailed information of the implemented methods. This information includes method
descriptions, parameters, references, examples, etc. Find all the information about specific modules and functions of
deepnog in this section.

27

documentation/documentation.html

deepnog, Release 1.1.0

28 Chapter 9. API Documentation

CHAPTER

TEN

DEVELOPMENT

There are several possibilities to contribute to this free open source software. We highly appreciate all input from the
community, be it bug reports or code contributions.

Source code, issue tracking, discussion, and continuous integration appear on our GitHub page.

29

development/contributing.html
https://github.com/VarIr/deepnog

deepnog, Release 1.1.0

30 Chapter 10. Development

CHAPTER

ELEVEN

WHAT’S NEW

To see what’s new in the latest version of deepnog, have a look at the changelog.

31

changelog.html

deepnog, Release 1.1.0

32 Chapter 11. What’s new

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

33

deepnog, Release 1.1.0

34 Chapter 12. Indices and tables

PYTHON MODULE INDEX

d
deepnog, 9
deepnog.client, 9
deepnog.dataset, 10
deepnog.inference, 12
deepnog.io, 13
deepnog.models, 14
deepnog.sync, 14
deepnog.tests, 15
deepnog.utils, 15

35

deepnog, Release 1.1.0

36 Python Module Index

INDEX

C
collate_sequences() (in module

deepnog.dataset), 11
collated_sequences (class in deepnog.dataset), 11
consume() (in module deepnog.dataset), 11
count() (deepnog.dataset.collated_sequences

method), 11
create_df() (in module deepnog.io), 13

D
deepnog

module, 9
deepnog.client

module, 9
deepnog.dataset

module, 10
deepnog.inference

module, 12
deepnog.io

module, 13
deepnog.models

module, 14
deepnog.sync

module, 14
deepnog.tests

module, 15
deepnog.utils

module, 15

G
gen_amino_acid_vocab() (in module

deepnog.dataset), 11
get_data_home() (in module deepnog.io), 13
get_parser() (in module deepnog.client), 9
get_weights_path() (in module deepnog.io), 14

I
ids() (deepnog.dataset.collated_sequences property),

11
increment() (deepnog.sync.SynchronizedCounter

method), 14

increment_and_get_value()
(deepnog.sync.SynchronizedCounter method),
14

index() (deepnog.dataset.collated_sequences
method), 11

indices() (deepnog.dataset.collated_sequences prop-
erty), 11

L
load_nn() (in module deepnog.inference), 12

M
main() (in module deepnog.client), 9
module

deepnog, 9
deepnog.client, 9
deepnog.dataset, 10
deepnog.inference, 12
deepnog.io, 13
deepnog.models, 14
deepnog.sync, 14
deepnog.tests, 15
deepnog.utils, 15

P
predict() (in module deepnog.inference), 12
ProteinDataset (class in deepnog.dataset), 10
ProteinIterator (class in deepnog.dataset), 10

S
sequences() (deepnog.dataset.collated_sequences

property), 11
set_device() (in module deepnog.utils), 15
start_prediction() (in module deepnog.client), 9
SynchronizedCounter (class in deepnog.sync), 14

V
value() (deepnog.sync.SynchronizedCounter prop-

erty), 14

37

	Installation
	Quick start example
	User guide
	API Documentation
	Contributing
	Changelog
	Getting started
	User Guide
	API Documentation
	Development
	What’s new
	Indices and tables
	Python Module Index
	Index

