

DeepNOG: fast and accurate protein orthologous group prediction

deepnog is a Python package for predicting protein orthologous groups
with deep networks.

Getting started

Get started with deepnog in a breeze.
Find how to install the package and
see all core functionality applied in a single
quick start example.

User Guide

The User Guide introduces the main concepts
of deepnog.

API Documentation

The API Documentation provides detailed
information of the implemented methods.
This information includes method descriptions, parameters, references,
examples, etc. Find all the information about specific modules and functions
of deepnog in this section.

Development

There are several possibilities to contribute
to this free open source software. We highly appreciate all input from the
community, be it bug reports or code contributions.

Source code, issue tracking, discussion, and continuous integration appear on
our GitHub page [https://github.com/VarIr/deepnog].

What’s new

To see what’s new in the latest version of deepnog,
have a look at the changelog.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installation from PyPI

The current release of deepnog can be installed from PyPI:

pip install deepnog

For typical use cases, and quick start, this is sufficient.

Dependencies and model files

All package dependencies of deepnog are automatically installed
by pip. We also require model files (networks parameters/weights),
which are too large for GitHub/PyPI. These are hosted on separate servers,
and downloaded automatically by deepnog, when required. By default,
models are cached in $HOME/deepnog_data/.

You can change this path by setting the DEEPNOG_DATA environment variable.

DEEPNOG_DATA="/custom/path/models" deepnog sequences.fa

Installation from source

You can always grab the latest version of deepnog directly from GitHub:

cd install_dir
git clone git@github.com:VarIr/deepnog.git
cd deepnog
pip install -e .

This is the recommended approach, if you want to contribute
to the development of deepnog.

Supported platforms

deepnog currently supports all major operating systems:

	Linux

	MacOS X

	Windows

Quick start example

Users of deepnog typically want to

	…

	…

	…

The following example shows all these steps for an example dataset.
Please make sure you have installed deepnog
(installation instructions).

First, we load the dataset and inspect its size.

from deepnog import predict
...

deepnog input.fa --out prediction.csv -db eggNOG5 --tax 2

User guide

Welcome to deepnog!
Here we describe the core functionality of the package
(…),
and provide several usage examples.

Contents:

	 Core concepts

	 Examples

Concepts

concepts

Examples

examples

API Documentation

This is the API documentation for deepnog.

DeepNOG

DeepNOG is a deep learning based command line tool which predicts the
protein families of given protein sequences based on pretrained neural
networks.

The main module of this tool is defined in deepnog.py. For details about the
usage of the tool, the reader is referred to the documentation as well as
deepnog.py.

Modules and subpackages

	client

	dataset

	inference

	io

	models

	sync

	tests

	utils

deepnog.client

Author: Lukas Gosch

Date: 2019-10-18

Usage: python client.py –help

Description:

Provides the deepnog command line client and entry point for users.

DeepNOG predicts protein families/orthologous groups of given
protein sequences with deep learning.

File formats supported:
Preferred: FASTA
DeepNOG supports protein sequences stored in all file formats listed in
https://biopython.org/wiki/SeqIO but is tested for the FASTA-file format
only.

Architectures supported:

	Databases supported:
	
	eggNOG 5.0, taxonomic level 1 (root)

	eggNOG 5.0, taxonomic level 2 (bacteria)

	
deepnog.client.get_parser()[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/client.py#L34]

	Creates a new argument parser.

	Returns

	parser – ArgumentParser object to parse program arguments.

	Return type

	ArgumentParser

	
deepnog.client.main()[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/client.py#L217]

	DeepNOG command line tool.

	
deepnog.client.start_prediction(args)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/client.py#L135]

	

deepnog.dataset

Author: Lukas Gosch

Date: 2019-10-03

Description:

Dataset classes and helper functions for usage with deep network models
written in PyTorch.

	
class deepnog.dataset.ProteinDataset(file, f_format='fasta')[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L257]

	Bases: torch.utils.data.dataset.IterableDataset

Protein dataset holding the proteins to classify.

Does not load and store all proteins from a given sequence file but only
holds an iterator to the next sequence to load.

Thread safe class allowing for multi-worker loading of sequences
from a given datafile.

	Parameters

	
	file (str) – Path to file storing the protein sequences.

	f_format (str) – File format in which to expect the protein sequences.
Must be supported by Biopython’s Bio.SeqIO class.

	
class deepnog.dataset.ProteinIterator(file_, aa_vocab, f_format, n_skipped: Union[int, deepnog.sync.SynchronizedCounter] = 0, num_workers=1, worker_id=0)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L138]

	Bases: object

Iterator allowing for multiprocess data loading of a sequence file.

ProteinIterator is a wrapper for the iterator returned by
Biopython’s Bio.SeqIO class when parsing a sequence file. It
specifies custom __next__() method to support single- and multi-process
data loading.

In the single-process loading case, nothing special happens,
the ProteinIterator sequentially iterates over the data file. In the end,
it informs the main module about the number of skipped sequences (due to
empty ids) through setting a global variable in the main module.

In the multi-process loading case, each ProteinIterator loads a sequence
and then skips the next few sequences dedicated to the other workers.
This works by each worker skipping num_worker - 1 data samples
for each call to __next__(). Furthermore, each worker skips
worker_id data samples in the initialization. At the end of the
workers lifetime, it sends the number of skipped sequences back to the
main process through a pipe the main process created.

The ProteinIterator class also makes sure that a unique ID is set for each
SeqRecord obtained from the data-iterator. This allows unambiguous handling
of large protein datasets which may have duplicate IDs from merging
multiple sources or may have no IDs at all. For easy and efficient
sorting of batches of sequences as well as for direct access to the
original IDs, the index is stored separately.

	Parameters

	
	file (str) – Path to sequence file, from which an iterator over the sequences
will be created with Biopython’s Bio.SeqIO.parse() function.

	aa_vocab (dict) – Amino-acid vocabulary mapping letters to integers

	f_format (str) – File format in which to expect the protein sequences.
Must be supported by Biopython’s Bio.SeqIO class.

	num_workers (int) – Number of workers set in DataLoader or one if no workers set.
If bigger or equal to two, the multi-process loading case happens.

	worker_id (int) – ID of worker this iterator belongs to

	
deepnog.dataset.collate_sequences(batch, zero_padding=True)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L30]

	Collate and zero-pad encoded sequence.

	Parameters

	
	batch (list[namedtuple] or namedtuple) – Batch of protein sequences to classify stored as a namedtuple-class
sequence (see ProteinDataset).

	zero_padding (bool) – If True, zero-pads protein sequences through appending zeros until
every sequence is as long as the longest sequences in batch. If False
raise NotImplementedError.

	Returns

	batch – Input batch zero-padded and stored in namedtuple-class
collated_sequences.

	Return type

	namedtuple

	
class deepnog.dataset.collated_sequences(indices, ids, sequences)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L]

	Bases: tuple

	
count(value, /)

	Return number of occurrences of value.

	
property ids

	Alias for field number 1

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

	
property indices

	Alias for field number 0

	
property sequences

	Alias for field number 2

	
deepnog.dataset.consume(iterator, n=None)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L124]

	Advance the iterator n-steps ahead. If n is None, consume entirely.

Function from Itertools Recipes in official Python 3.7.4. docs.

	
deepnog.dataset.gen_amino_acid_vocab(alphabet=None)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/dataset.py#L89]

	Create vocabulary for protein sequences.

A vocabulary is defined as a mapping from the amino-acid letters in the
alphabet to numbers. As this mapping is aware of zero-padding,
it maps the first letter in the alphabet to 1 instead of 0.

	Parameters

	alphabet (str) – Alphabet to use for vocabulary.
If None, use ‘ACDEFGHIKLMNPQRSTVWYBXZJUO’ (equivalent to deprecated
Biopython’s ExtendedIUPACProtein).

	Returns

	vocab – Mapping of amino acid characters to numbers.

	Return type

	dict

deepnog.inference

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Predict orthologous groups of protein sequences.

	
deepnog.inference.load_nn(architecture, model_dict, device='cpu')[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/inference.py#L23]

	Import NN architecture and set loaded parameters.

	Parameters

	
	architecture (str) – Name of neural network module and class to import.

	model_dict (dict) – Dictionary holding all parameters and hyper-parameters of the model.

	device ([str, torch.device]) – Device to load the model into.

	Returns

	model – Neural network object of type architecture with parameters
loaded from model_dict and moved to device.

	Return type

	torch.nn.Module

	
deepnog.inference.predict(model, dataset, device='cpu', batch_size=16, num_workers=4, verbose=3)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/inference.py#L54]

	Use model to predict zero-indexed labels of dataset.

Also handles communication with ProteinIterators used to load data to
log how many sequences have been skipped due to having empty sequence ids.

	Parameters

	
	model (nn.Module) – Trained neural network model.

	dataset (ProteinDataset) – Data to predict protein families for.

	device ([str, torch.device]) – Device of model.

	batch_size (int) – Forward batch_size proteins through neural network at once.

	num_workers (int) – Number of workers for data loading.

	verbose (int) – Define verbosity.

	Returns

	
	preds (torch.Tensor, shape (n_samples,)) – Stores the index of the output-node with the highest activation

	confs (torch.Tensor, shape (n_samples,)) – Stores the confidence in the prediction

	ids (list[str]) – Stores the (possible empty) protein labels extracted from data
file.

	indices (list[int]) – Stores the unique indices of sequences mapping to their position
in the file

deepnog.io

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Input/output helper functions

	
deepnog.io.create_df(class_labels, preds, confs, ids, indices, threshold=None, verbose=3)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/io.py#L31]

	Creates one dataframe storing all relevant prediction information.

The rows in the returned dataframe have the same order as the
original sequences in the data file. First column of the dataframe
represents the position of the sequence in the datafile.

	Parameters

	
	class_labels (list) – Store class name corresponding to an output node of the network.

	preds (torch.Tensor, shape (n_samples,)) – Stores the index of the output-node with the highest activation

	confs (torch.Tensor, shape (n_samples,)) – Stores the confidence in the prediction

	ids (list[str]) – Stores the (possible empty) protein labels extracted from data
file.

	indices (list[int]) – Stores the unique indices of sequences mapping to their position
in the file

	threshold (int) – If given, prediction labels and confidences are set to ‘’ if
confidence in prediction is not at least threshold.

	verbose (int) – If bigger 0, outputs warning if duplicates detected.

	Returns

	df – Stores prediction information about the input protein sequences.
Duplicates (defined by their sequence_id) have been removed from df.

	Return type

	pandas.DataFrame

	
deepnog.io.get_data_home(data_home: str = None) → pathlib.Path[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/io.py#L95]

	Return the path of the deepnog data dir.

This folder is used for large files that cannot go into the Python package
on PyPI etc. For example, the network parameters (weights) files may be
larger than 100MiB.
By default the data dir is set to a folder named ‘deepnog_data’ in the
user home folder.
Alternatively, it can be set by the ‘DEEPNOG_DATA’ environment
variable or programmatically by giving an explicit folder path.
If the folder does not already exist, it is automatically created.

	Parameters

	data_home (str | None) – The path to deepnog data dir.

Notes

Adapted from SKLEARN_DATAHOME [https://github.com/scikit-learn/scikit-learn/blob/0.22.X/sklearn/datasets/_base.py].

	
deepnog.io.get_weights_path(database: str, level: str, architecture: str, data_home=None, download_if_missing=True) → pathlib.Path[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/io.py#L126]

	Get path to neural network weights.

This is a path on local storage. If the corresponding files are not
present, download from remote storage. The default remote URL can be
overridden by setting the environment variable DEEPNOG_REMOTE.

	Parameters

	
	database (str) – The orthologous groups database. Example: eggNOG5

	level (str) – The taxonomic level within the database. Example: 2 (for bacteria)

	architecture (str) – Network architecture. Example: deepencoding

	data_home (string, optional) – Specify another download and cache folder for the weights.
By default all deepnog data is stored in ‘~/deepnog_data’ subfolders.

	download_if_missing (boolean, default=True) – If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.

	Returns

	weights_path – Path to file of network weights

	Return type

	Path

deepnog.models

Description:

Network definitions (PyTorch modules)

deepnog.sync

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Parallel processing helpers

	
class deepnog.sync.SynchronizedCounter(init: int = 0)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/sync.py#L18]

	Bases: object

A multiprocessing-safe counter.

	Parameters

	init (int, optional) – Counter starts at init (default: 0)

	
increment(n=1)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/sync.py#L57]

	Obtain a lock before incrementing, since += isn’t atomic.

	Parameters

	n (int, optional) – Increment counter by n (default: 1)

	
increment_and_get_value(n=1) → int[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/sync.py#L69]

	Obtain a lock before incrementing, since += isn’t atomic.

	Parameters

	n (int, optional) – Increment counter by n (default: 1)

	
property value

	

deepnog.tests

Description:

deepnog unit tests

deepnog.utils

Author: Roman Feldbauer

Date: 2020-02-19

Description:

Various utility functions

	
deepnog.utils.set_device(device)[source] [https://github.com/VarIr/deepnog/blob/4eeeafa/deepnog/utils.py#L30]

	Set device (CPU/GPU) depending on user choice and availability.

	Parameters

	device (str) – Device set by user as an argument to DeepNOG call.

	Returns

	device – Object containing the device type to be used for prediction
calculations.

	Return type

	torch.device

Contributing

deepnog is free open source software.
Contributions from the community are highly appreciated.
Even small contributions improve the software’s quality.

Even if you are not familiar with programming languages and tools,
you may contribute by filing bugs or any problems as a
GitHub issue [https://github.com/VarIr/deepnog/issues].

Git and branching model

We use git for version control (CVS), as do most projects nowadays.
If you are not familiar with git, there are lots of tutorials on
GitHub Guide [https://guides.github.com/].
All the important basics are covered in the
GitHub Git handbook [https://guides.github.com/introduction/git-handbook/].

Development of deepnog (mostly) follows this
git branching model [https://nvie.com/posts/a-successful-git-branching-model/].
We currently use one main branch: master.
For any changes, a new branch should be created.
This includes new feature, noncritical or critical bug fixes, etc.

Workflow

In case of large changes to the software, please first get in contact
with the authors for coordination, for example by filing an
issue [https://github.com/VarIr/deepnog/issues].
If you want to fix small issues (typos in the docs, obvious errors, etc.)
you can - of course - directly submit a pull request (PR).

	
	Create a fork of deepnog in your GitHub account.
	Simply click “Fork” button on https://github.com/VarIr/deepnog.

	
	Clone your fork on your computer.
	$ git clone git@github.com:YOUR-ACCOUNT-GOES-HERE/deepnog.git && cd deepnog

	
	Add remote upstream.
	$ git remote add upstream git@github.com:VarIr/deepnog.git

	
	Create feature/bugfix branch.
	$ git checkout -b bugfix123 master

	
	Implement feature/fix bug/fix typo/…
	Happy coding!

	
	Create a commit with meaningful message
	If you only modified existing files, simply
$ git commit -am "descriptive message what this commit does (in present tense) here"

	
	Push to GitHub
	e.g. $ git push origin featureXYZ

	
	Create pull request (PR)
	Git will likely provide a link to directly create the PR.
If not, click “New pull request” on your fork on GitHub.

	
	Wait…
	Several devops checks will be performed automatically
(e.g. continuous integration (CI) with Travis, AppVeyor).

The authors will get in contact with you,
and may ask for changes.

	
	Respond to code review.
	If there were issues with continuous integration,
or the authors asked for changes, please create a new commit locally,
and simply push again to GitHub as you did before.
The PR will be updated automatically.

	
	Maintainers merge PR, when all issues are resolved.
	Thanks a lot for your contribution!

Code style and further guidelines

	Please make sure all code complies with
PEP 8 [https://www.python.org/dev/peps/pep-0008/]

	All code should be documented sufficiently
(functions, classes, etc. must have docstrings with general description,
parameters, ideally return values, raised exceptions, notes, etc.)

	Documentation style is
NumPy format [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard].

	New code must be covered by unit tests using pytest [https://docs.pytest.org/en/latest/].

	If you fix a bug, please provide regression tests (fail on old code, succeed on new code).

	It may be helpful to install deepnog in editable mode for development.
When you have already cloned the package, switch into the corresponding directory,
and

pip install -e .

(don’t omit the trailing period).
This way, any changes to the code are reflected immediately.
That is, you don’t need to install the package each and every time,
when you make changes while developing code.

Testing

In deepnog, we aim for high code coverage. As of Feb 2020,
more than 95% of all code lines are visited at least once when
running the complete test suite. This is primarily to ensure:

	correctness of the code (to some extent) and

	maintainability (new changes don’t break old code).

Creating a new PR, ideally all code would be covered by tests.
Sometimes, this is not feasible or only with large effort.
Pull requests will likely be accepted, if the overall code coverage
at least does not decrease.

Unit tests are automatically performed for each PR using CI tools online.
This may take some time, however.
To run the tests locally, you need pytest installed.
From the deepnog directory, call

pytest deepnog/

to run all the tests. You can also restrict the tests to the subpackage
you are working on, down to single tests.
For example

pytest deepnog/tests/test_dataset.py --showlocals -v

only runs tests about datasets.

In order to check code coverage locally, you need the
pytest-cov plugin [https://github.com/pytest-dev/pytest-cov].

pytest deepnog --cov=deepnog

Changelog

Next release [https://github.com/VarIr/deepnog/compare/v1.1.0...HEAD]

…

1.1.0 [https://github.com/VarIr/deepnog/releases/tag/v1.1.0] - 2020-02-28

Added

	EggNOG5 root (tax 1) prediction

Changed

	Package structure changed for higher modularity. This will require changes
in downstream usages.

	Remove network weights from the repository, because files are too large for
github and/or PyPI. deepnog automatically downloads these from
CUBE [https://cube.univie.ac.at] servers, and caches them locally.

	More robust inter-process communication in data loading

Fixes

	Fix error on very short amino acid sequences

	Fix error on unrecognized symbols in sequences (stop codons etc.)

	Fix multiprocess data loading from gzipped files

	Fix type mismatch in deepencoding embedding layer (Windows only)

Maintenance

	Continuous integration on

	Travis [https://travis-ci.com/VarIr/deepnog/] (Linux, MacOS)

	AppVeyor [https://ci.appveyor.com/project/VarIr/deepnog] (Windows)

	Codecov [https://codecov.io/gh/VarIr/deepnog/] coverage reports

	LGTM [https://lgtm.com/projects/g/VarIr/deepnog] code quality/security reports

	Documentation on ReadTheDocs [https://deepnog.readthedocs.io]

	Upload to PyPI [https://pypi.org/project/deepnog/], thus enabling
$ pip install deepnog.

1.0.0 [https://github.com/VarIr/deepnog/releases/tag/v1.0.0final] - 2019-10-18

The first release of deepnog to appear in this changelog.
It already contains the following features:

	EggNOG5 bacteria (tax 2) prediction

	DeepEncoding architecture

	CPU and GPU support

	Runs on all major platforms (Linux, MacOS, Windows)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deepnog	

 	
 	
 deepnog.client	

 	
 	
 deepnog.dataset	

 	
 	
 deepnog.inference	

 	
 	
 deepnog.io	

 	
 	
 deepnog.models	

 	
 	
 deepnog.sync	

 	
 	
 deepnog.tests	

 	
 	
 deepnog.utils	

Index

 C
 | D
 | G
 | I
 | L
 | M
 | P
 | S
 | V

C

 	
 	collate_sequences() (in module deepnog.dataset)

 	collated_sequences (class in deepnog.dataset)

 	
 	consume() (in module deepnog.dataset)

 	count() (deepnog.dataset.collated_sequences method)

 	create_df() (in module deepnog.io)

D

 	
 	
 deepnog

 	module

 	
 deepnog.client

 	module

 	
 deepnog.dataset

 	module

 	
 deepnog.inference

 	module

 	
 deepnog.io

 	module

 	
 	
 deepnog.models

 	module

 	
 deepnog.sync

 	module

 	
 deepnog.tests

 	module

 	
 deepnog.utils

 	module

G

 	
 	gen_amino_acid_vocab() (in module deepnog.dataset)

 	get_data_home() (in module deepnog.io)

 	
 	get_parser() (in module deepnog.client)

 	get_weights_path() (in module deepnog.io)

I

 	
 	ids() (deepnog.dataset.collated_sequences property)

 	increment() (deepnog.sync.SynchronizedCounter method)

 	
 	increment_and_get_value() (deepnog.sync.SynchronizedCounter method)

 	index() (deepnog.dataset.collated_sequences method)

 	indices() (deepnog.dataset.collated_sequences property)

L

 	
 	load_nn() (in module deepnog.inference)

M

 	
 	main() (in module deepnog.client)

 	
 module

 	deepnog

 	deepnog.client

 	deepnog.dataset

 	deepnog.inference

 	deepnog.io

 	deepnog.models

 	deepnog.sync

 	deepnog.tests

 	deepnog.utils

P

 	
 	predict() (in module deepnog.inference)

 	
 	ProteinDataset (class in deepnog.dataset)

 	ProteinIterator (class in deepnog.dataset)

S

 	
 	sequences() (deepnog.dataset.collated_sequences property)

 	set_device() (in module deepnog.utils)

 	
 	start_prediction() (in module deepnog.client)

 	SynchronizedCounter (class in deepnog.sync)

V

 	
 	value() (deepnog.sync.SynchronizedCounter property)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 DeepNOG: fast and accurate protein orthologous group prediction

